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Abstract

We revisit and extend the original definition of discrete-time stochastic Petri nets,

by allowing the firing times to have a "defective discrete phase distribution". We show

that this formalism still corresponds to an underlying discrete-time Markov chain. The

structure of the state for this process describes both the marking of the Petri net and

the phase of the firing time for of each transition, resulting in a large state space. We

then modi_' the well-known power method to perform a transient analysis even when

the state space is infinite, subject to the condition that only a finite number of states

can be reached in a finite amount of time. Since the memory requirements might still

be excessive, we suggest a bounding technique based on truncation.

IThis research was partially supported by the National Aeronautics and Space Administration under

NASA Contract No. NAS1-19480 while in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.





1 Introduction

In the-past decade, stochastic Petri nets (SPNs) have received much attention from re-

searchers in the performance and reliability arena and have been extensively applied to

the performance and reliability modeling of computer, communication, manufacturing, and

aerospace systems [4, 5, 7, 10, 23]. While there is agreement on tile appropriateness of SPNs

as a description formalism for a large class of systems, two radically different solution ap-

proaches are commonly employed: simulation and state-space-based analysis. Simulation

allows to associate general distributions to the duration of activities (SPN transitions), but

it. requires multiple runs to obtain meaningful statistics. This problem is particularly, acute

in reliability studies, where many runs might be required to obtain tight confidence intervals.

With simulation, the state of the SPN is composed of the marking, describing the structural

state of the SPN, and the remaining firing times, describing how long each transition in the

SPN must still remain enabled before it can fire. The simulated time 0 is advanced by flrin 9

the transition with the smallest remaining firing time.

State-space-based analysis has been mostly applied to SPNs whose underlying process is

a continuous-time Markov chain (CTMC), that is, to SPNs with exponentially distributed

firing times [3, 12, 25, 26]. Except for numerical truncation and roundoff, exact, results are

obtained, but the approach has two limitations: the number of SPN markings increases

combinatorially, rendering unfeasible the solution of large models, and generally-distributed

activities must be modeled using "phase-type (PH) expansion" [1.5]. PH distributions can

approximate any distribution arbitrarily well, but. it is difficult, to exploit this fact in practice

because the expansion exacerbates the state-space size problem.

Discrete distributions for the timing of SPNs have received less attention. This is un-

fortunate, since deterministic distributions (constants) are often needed to model low-level

phenomena in both hardware and software, and the geometric distribution is the discrete

equivalent of the exponential distribution and can approximate it arbitrarily well as the size

of the step decreases. Furthermore, there is evidence supporting the use of deterministic

instead of exponential distributions when modeling parallel programs [1].

If all the firing distributions are geometric with the same step, the underlying process is

a discrete-time Markov chain (DTMC) [2.5]. Such SPNs can model synchronous behavior,

as well as the main aspect of asynchronous systems: the uncertainty about the ordering

of quasi-simultaneous events. A DTMC is described by a square one-step state transition

probability matrix II and an initial state probability vector rr[°1. The state probability vector

at step n can be obtained with the iteration (power method): rci'q = _[_-llII. This result

was extended in [11] to include immediate transitions, which fire in zero time, and geometric

firing distributions with steps multiple of a basic unit step, possibly with parameter equal

one. that is, constants. [29] restates these results in more detail, and uses the concept of



weight to break the ties, following [3]and, moreclosely,[13]. GeneralizedTimed Petri Nets
(GTPN) have also been proposed [19], wherethe steps of the geometric firing times for
each transition can be arbitrary, unrelated, real numbers. A DTMC can be obtained by

embedding,but the analysisis restricted to steady-statebehavior and the state spaceof the
DTMC can be infinite evenwhen the underlying untimed PN has a finite reachability set.

Analogousconsiderationshold for D-timed PNs [30].
We generalizeand formalize the results in [13]and show how,using phase-expansion,a

DTMC can be obtained evenif the firing time distributions are not geometric, as long as

firings canoccur only at somemultiple of a unit step. The state can then be describedby
the marking plus the phaseof eachtransition. This extendsthe classof SPNsthat can be

solvedanalytically, but two limitations still exist: the existenceof a basicstepand the sizeof
the state space.By usinga finestep, arbitrary stepscanbe approximated,but this increases

the state space.
Approachesto solvemodelswith a largestate spacehavebeenproposedfor both steady-

state and transient analysis. [6] considersthe reliability study of a SPN with exponentially

distributed firing times, under the condition that the reachability graph is acyclic. The

underlying CTMC is then acyclic as well, and a state can be discarededas soon as the
transitions out of it have beenexplored, resulting in an algorithm offering large savings

in memory and computations with respect to traditional numerical approaches.However,

acyclic state spacesariseonly in special cases,suchas reliability modelsof non-repairable

systems.
Fortransient analysisof ageneralCTMC, Jensen'smethod [21],alsocalleduniformization

[17,27], is widely adopted. [18]outlines a dynamic implementationof the algorithm, where
the state spaceis explored asthe computation of the transient probability vectorproceeds,
not in advance,asnormally done. This allowsto obtain a transient solutionevenif the state

spaceis infinite, provided that the transition rateshavean upper bound.
If the CTMC contains widely different rates, the number of matrix-vector multiplications

required by uniformization can be excessive. Proposals to alleviate this problem are selective

randomization [24] and adaptive uniformization [28], both based on the idea of allowing

different uniformization rates, according to the set of states that can be reached at each

step. The latter, in addition, can be used with infinite state spaces even if the rates have no

upper bound. However, the method can incur a substantial overhead, and it appears that

an adaptive step is advantageous only in special cases or for short time horizons.
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In Sections 2, 3, and 4 we define the underlying untimed PN model, the class of DDP

distributions used for the temporization of a PN, and the resulting DDP-SPN formalism,

respectively. Section 5 discusses the numerical solution of a DDP-SPN, by building and

solving it.s underlying stochastic process, a DTMC. Section 6, examines approaches to cope

with large state spaces.

2 The P N formalism

We recall the (ext.ended)PN formalism used in [12, 14]. A PN is a tuple ( P, T, D-, D+, D°, >.-, g, /,[°])
where:

• P is a finite set of places, which can contain tokens. A marking # ¢ IN IPI defines

the number of tokens in each place p E P, indicated by t_p (when relevant, a marking

should be considered a column vector). D-, D +, D °, and g are "marking-dependent".

that. is, they are specified as functions of the marking.

• T is a finite set of transitions. P Cl T = 0.

• Vp E P, gt E T, Vp • IN IPI, D_,t(la) • D4, D+t(p) • _X', and D_,,(/,) • [\ are the

multiplicities of the input arc from p to l, the output arc from f to p, and the inhibitor

arc from p to t, when the marking is if, respectively.

• >- C_ T x T is an acyclic (pre-selection) priority relation.

• Vt • T, Vp • INIPI,gt(ff) • {0,1} is the guard for t in marking/1.

• if[0] • INIPI is the initial marking.

Places and transitions are drawn as circles and rectangles, respectively. The number of

tokens in a place is written inside the place itself (default is zero). Input and output arcs

have an arrowhead on their destination, inhibitor arcs have a small circle. The multiplicity

is written on the arc (default is the constant 1); a missing arc indicates that the multiplicity

is the constant 0. The default value for guards is the constant 1.

A transition t • T is enabled in marking/, iff all the following conditions hold:

1. gt(P)= 1.

3. Vp• P,D;a(# ) > #p or D;,t(/I) = 0.

4. Vu • T. 'u _z t or u is not enabled in p (well defined because >- is acyclic).
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Figure 1: Examples of DDP distributions.

Let £(/_) be the set of transitions enabled in marking g. A transition t C £(#) can fire,

causing a change to marking .Ad(t, #), obtained from _ by subtracting the "input bag" D_.t(/_)

and adding the "output bag" D+t(/_) to it: M(t,,)= 11- D_t(t_) + D.+.t(IL) = # + Do,_(/_),

where D = D +-D- is the incidence matrix. 3,4 can be extended to its reflexive and transitive

closure by considering the marking reached from g after firing a sequence of transitions. The

teachability set is given by T¢ = {g : 3or C T* A g = ,,t4(cr, #[01)} where T* indicates the set

of transition sequences.

3 Discrete phase distributions

We now define the class 7) of (possibly defective) discrete phase DDP) distributions, which

will be used to specify the duration of a firing time in a SPN. A random variable X is said to

have a DDP distribution, X -,_ 7?, iff there exists an absorbing DTMC {AN : k C IN} with

finite state space ,4 = {0, 1,..., n} and initial probability distribution given by [Pr{A [°1 =

i},i e A], such that states A \ {0, n} are transient and states {0, n} are absorbing, and X is

the time to reach state 0: X = min{k _> 0 : A N = 0}. If Pr{A [°] = 0} > 0, the distribution

has a mass at the origin. If Pr{A [°1 = i} > 0 and state i can reach state n, the distribution

is (strictly) defective.

7? is the smallest class containing the distributions Const(0), Const(1), and Const(_)

and closed under:

• Finite convolution: if X1 "_ 72 and X2 _ _D, then X = X1 + X2 "_ Z).

• Finite weighted sum: if X1 " 19, X2 "_ I) and B E {0,1} is a Bernoulli random

variable, then X = BX1 + (1 - B)X2 "_ l?.

• Infinite geometric sum: if {Xk "-" _D • k E IN+ } is a family of iid's and N is a geometric

random variable, then X = _1<k<:¢ Xk _/9.
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Figure 2: Equivalent DTMC representations

The geometric and modified geometric distributions with arbitrary positive integer step,

Geom(a,a,,) and ModGeom(c_,ay), 0 _< o_ _< 1, w E IN +. the constant non-negative integer

distribution, Const(w), a: E IN, and any discrete distribution with finite non-negative integer

support are special cases of DDP distributions. An example of a random variable with non-

negative integer support which does not have a DDP distribution is N 2, where N _-, Geom(a).

Fig. 1 shows examples of DDP distributions. The "initial state" b, for begin, has zero

sojourn time and is introduced to represent graphically, the initial probability distribution.

We use this representation since it allows to estimate the "complexity" of a DTMC by

counting the number of nodes and arcs in its graph. For simplicity, the last. state, e.g.,

4 for Geom(a,3) and 3 for Const(2), can be omitted if it is not. reachable from b (if the

distribution is actually not defective). Unfortunately, the DTMC corresponding to a given

DDP distribution might not be unique, even if the number of states if fixed. For example,

the time X t.o reach state 0 for the DTMCs in Fig. 2, both with five nodes and seven arcs,

has distribution Unif(0,3), that is, Pr{X = i} = 1/4, for i E {0,1,2,3}.

4 The DDP-SPN formalism

SPNs are obtained when the time that must elapse between the instant a transition becomes

enabled and the instant, it can fire, or firing time, is a random variable. By restricting the

firing times distributions to 7?, we obtain the DDP-SPNs, corresponding to a stochastic

process where the state has the form s = (#, ¢) E IN IPI x IN Irl. The structural component

it is simply the current marking. The timing component o describes the current "phases",

the state for the DTMC chosen to encode the DDP distribution associated with the firing

time of each transition. The firing time of a transition t elapses when its phase _t reaches 0.

Formally, a DDP-SPN is a tuple (P, T, D-, D +, D °, >-, g, if[o] (I), G, F, 6 [°], >--, w) where:

• (P, T, D-, D +, D °, :>-,g, /z[°]) define a PN.

• Vt E T, Vlz E 7_, q)_(ll) C IN is the finite set of possible phases in which transition t can

be when the marking is tl.



• Via E "R, gt E g(p),Vi,j E cPt(p),G,(#,i,j) is the probability that the phase of t

changes from i to j at the end of one step, when t is enabled in marking p. Hence,

_Je'_,U,) Gt(#,i,j) = 1.

• vj, _ r_,Vu c g(_),vt c T, Vi c _,(_,),Vj e _(.M(u,#)),F_,_(l_,i,j)is the prob-

ability that the phase of t changes from i to j when u fires in marking /_. Hence,

Eje_,,(M(u,,n F_,_(l_, i,j) = 1.

• Vt E T, ¢I °l E @t(/_ [°1) is the phase of t at time 0.

• > C_ T x T is an acyctic (post-selection) priority relation.

• V/_ E R,,VS C_ ,5'(#),gt E S, Wtls(l_) E IR+ is the firing weight for t when S is the set. of

candidates to fire in marking/1.

A transition t E T is said to be a candidate (to fire) in state s = (#, _b) iff all the following

conditions hold:

1. t C 8(/1).

2. 4_=0.

3. Vu E T, u _ t or u is not a candidate in s (remember that > is acyclic).

Let C(s) be the set of candidates in state s. Gt(l_, •, ") is the one-step transition probability

matrix of the DTMC {01k] : k E IN}, with state space Or(P), corresponding to the DDP-

distributed firing time for transition t in marking # in isolation, that is, assuming that no

other transition firing affects the firing time of t. However, if another transition u fires

before t, leading to marking p', the phase _b, of t will change according to the distribution

Fu,t(p, ¢t,•). Furthermore, after the firing of u, the phase of t will evolve according to

Gt(#',•,•), which might differ from G_(#,•,.), it can even have a different state space,

qSt(tt' ) instead of qSt(#).

We stress that pre-selection and post-selection have a different semantic. Only in the

case of immediate transitions the two become equivalent. Assume that only t and u satisfy"

the input, inhibitor, and guard conditions in /1. We have three options, resulting in three

different behaviors:

• Specify a pre-selection priority between them, for example t > u, so that u will not be

enabled when t is. This means that the phase aSt of t evolves according to Gt(#, •, ,.),

while Cu does not. The same effect would be achieved using a guard g_(p) = 0.



Specify no pre-selection priority, but a post-selection priority between them, for exam-

ple t >- u. This means that the phases of both t and u evolve in #. The first one to

reach phase 0 will fire but, in case of a tie, t will be chosen. However. if 0, = 0 when

t fires and if Ft,_,(#,O, O) = 1, u might be a candidate in the new marking, and fire

immediately after t.

• Specie' neither a pre-selection nor a post-selection priority between them. Then. as in

the previous case, t and u are in a race to reach phase 0, but a tie is now resolved by

a probabilistic choice according to the the weights: ff,tl{t,,}(Ft) and zb<{t,_}(#), respec-

tively, where u5 is a normalization of w to ensure that the weights of the candidates in

a marking sum to one.

Let. (/_[_1, eS['d)be the state of the DDP-SPN a.t step n. Then, the process {(l_[q, _[_1) "n C IN}

is a DTMC with state space ,5" C_ IN IPI × D-Irl. Its one-step transition probability matrix

gl is determined by considering the possibility of simultaneous firings. Consider a state

s = (#, 0). If C(s) # _, one of the candidates will fire immediately, and the sojourn time in

.s is zero. Otherwise, the sojourn time in s is one. Following GSPN [.3] terminology, we call

s a vanishing or tangible state, respectively. Hence, s is tangible iff O > 0.

Let _¢_.,, be the set of possible event sequences events leading from a tangible state

s = (t*, _) to a tangible state .s' = (I/, 4>') in one time step:

Ss,.s' = {(7 = (#(0), (_{0), i_(O),#(I) ¢(I) t(1), . . .#(n-l) &(n-l)t(n-l) #(n) _5(n)) .

n _> 0,#(°) = #,#(_) = tl, ,6(_) = 6',

w c E(#), +,, )) > 0, (1)

Vi,0 < i < n,t(o c C(l_(°,6(°),i_(_+_)= M(t (o,#(_)), (2)

V_ _ T, Ft(I)I(# (i) +Ii),+I i+1)1 _> 0}. (3)

(1) considers the one-step evolution of the phases for the enabled transitions in isolation,

while (2) and (3) consider the sequentialized firing in zero time of zero or more transitions

at the end of the one-step period. Hence, (#(i), eS(i)) is a vanishing state, for 0 _< i < n.

The value of the nonzero entries of H is obtained by summing the probability of all

possible sequences leading from s to s':

II_,¢ = }--_ ( 1-I Gt(#,6,,_51°)))
_ES,._, tE_(u)

\tET '

In a practical implementation, 1-I is computed one row at a time. The complexity of

computing row s of H can be substantial, depending on the length and number of sequences
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Figure 3: (0, 0) can reach an infinite number of markings in one time step.

in U_, S_,s,. If Us, S_,s, is infinite, special actions must be taken. This can happen for two

reasons:

7-¢. is itself infinite, and state s can reach an infinite number of states in a single

step. Consider, for example, a single queue with batch arrivals of size N > 0, where

N _-, Geom(a), as in Fig. 3. Following the firing of t, a geometrically distributed

number of tokens will be placed in p2: when the token is finally removed from pl (by the

firing of v), p2 contains N tokens with probability o_(1- c_)N-1 . This represents a batch

arrival of size N at the server modeled by place p2 and transition y. Unfortunately,

finiteness of R is an undecidable question for the class of Petri nets we defined, since

transition priorities alone make them Turing equivalent [2].

S_,_, can be infinite for a particular s'. If 7_ is finite, this requires the presence of

arbitrarily long paths over a finite set of vanishing states, just as for a "vanishing

loop" in a GSPN [11]. In a practical implementation, these cycles can be detected and

managed appropriately.

The size of the DTMC underlying a DDP-SPN is affected by the choice of the representa-

tion for the DDP distributions involved. Consider, for example, the DDP-SPN in Fig. 4(a),

and assume that transitions tl, t2, and ta have firing time distributions Const(1), Unif(0, 3),

and Const(2), respectively. The corresponding DTMCs obtained using the two representa-

tions of Fig. 2 for Unif(0, 3) are shown in Fig. 4(b) and 4(c), respectively. The number of

states is ten in the first case, seven in the second (the value of 6t is specified as "e" whenever

t is not enabled and either it cannot become enabled again or its phase is going to be reset

upon becoming enabled). The difference between the size of the two DTMCs is due to a

lumping [22] of the states, and it would be even greater if ta had a more complex distribu-

tion. By postponing the probabilistic decision as much as possible, the second DTMC lumps

8
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Figure 4: The effect of equivalent Unif(0, 3) representations.

states (011,.12), (011,e22), and (011,e32) of the first DTMC into a single one, (011,e32),

and states (011,*11)and (011,e21)into (011,e21).

5 Analysis of DDP-SPNs

When using a SPN to model a system, a reward rate p, is associated to each marking #.

Starting from {(/_N, _b[_]) : n C IN}, it is then possible to define two continuous-parameter

processes: {9(0),0 _> 0}, describing the instantaneous reward rate at time 0: y(O) = P,(o),

where it(0) = #[m_x(__<e}], and {Y(0), 0 _> 0}, describing the reward accumulated up to time

O, Y(O) = f°o p,(,)dr.

We consider the computation of the expected value of y(Or) and Y(OF) for finite values

of OF. Let _r['q = [_r!'_]] = [Pr{s['q = s}] be the state probability vector at time n. Once

the state-space ,5' corresponding to the initial state (/_[0] 0[o]) has been generated, any initial

probability vector over $ can be used for the initial probability vector 7r[°], there is no

requirement to use a vector having a one in position (¢t [°], 6[ °]) and a zero elsewhere. From

rc[°], we can obtain _-[_] iteratively, performing n matrix-vector multiplications:

7r In] _____71-[n-l][I (4)

Since the DTMC can change state only at integer times, 7r(0) = rr[_] for 0 E [n, 77+ 1). Practi-

cal implementations assume that the state space is finite and that the transition probability

matrix II is computed before starting the iterations. The following shows the pseudo-code

to compute E[y(OF)] and E[Y(OF)] with the "power method":

1. "compute ,5", l-i, and r[°]";

2. Y _ 0; 7r (--- 7r[°];

3. for n = 1 to [0FJ do

9
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